If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+39x-18=0
a = 7; b = 39; c = -18;
Δ = b2-4ac
Δ = 392-4·7·(-18)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-45}{2*7}=\frac{-84}{14} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+45}{2*7}=\frac{6}{14} =3/7 $
| 17r=18r-8 | | y-25=1.75-y=1.50/2.00/1- | | 20p+6=6+19p-10 | | 3-20b=-18b+19 | | 17x+8+12-4=42 | | -7z=4-8z | | 4y2=32 | | 11y−3=3y+293y+29 | | 6×-5=7-9x | | 7x+9=6x-x+6+3 | | 6(x+2)-6x+12)=0 | | 0.5x+0.9=0.8x-0.3 | | 11v-9+5v=-25 | | 18x+26=20x | | 9x-10=5x+34 | | (5/3)+(3m/5)=(37/15) | | 2x+13+10x=144 | | 4(a-5)=2a+15 | | 4y-6(y+3)=(2y)-2 | | -5f-8=-8f+10+5f | | 4t+4=18t-6t | | 2x+10+4x-3=9x-69.5 | | 0x+8=2x+6 | | X+3x+4x=28 | | 10(x+)-(-9x-4)=x-5+3 | | 2n-12=n/4 | | 3x+8-5x-5=2(x+6-7x) | | 4a-5=2 | | 5x+2(x+5)=38 | | 180=(180-x)-x+116 | | 10(x-3)=-10(x+9) | | 2(-5y+6)=(2y-8) |