If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+3=31
We move all terms to the left:
7x^2+3-(31)=0
We add all the numbers together, and all the variables
7x^2-28=0
a = 7; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·7·(-28)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*7}=\frac{-28}{14} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*7}=\frac{28}{14} =2 $
| u/11=5/3 | | 7/17=y/11 | | 5e-3e=6 | | -26=2w+2(w+7) | | 125x=11 | | (2+x)3=12 | | 1/4h-6=18 | | -9=7(u-5)+6u | | 18=2(x+4)-4x | | 0.6x-0.4=6.2 | | ((3x-4)/7)=5 | | x7-4=6 | | 8s-7s=4 | | 3x^2=-5+2x | | 7(x-6)+11=3(x-5) | | 10+x2=9 | | (-8-3k)/(2)=11 | | 42=2+3x | | 5(5b-2)=15 | | 4=8+x+3x | | -3x+33=x+9 | | 7=1/2x+1 | | 5x+4x=2x+14 | | 2x+10=-2x+8+-4 | | -4(2y-2)-y=-3(y-3) | | 10x+6=3(3x+6) | | 44=14-2a= | | 8x-4x+3=x-4+7 | | y-5=-8= | | -7b=21= | | 28x-18=29 | | 2(5x−1)=8 |