7x2+3x+4+7x2+3x+4=

Simple and best practice solution for 7x2+3x+4+7x2+3x+4= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7x2+3x+4+7x2+3x+4= equation:



7x^2+3x+4+7x^2+3x+4=
We move all terms to the left:
7x^2+3x+4+7x^2+3x+4-()=0
We add all the numbers together, and all the variables
14x^2+6x=0
a = 14; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·14·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*14}=\frac{-12}{28} =-3/7 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*14}=\frac{0}{28} =0 $

See similar equations:

| 10w-31w+15=0 | | 2+4x=5(-x+8)-83 | | (x+4)(x+8)(x+11)+20=0 | | 9r^2-36=45 | | -(5-t)=0937t-12t+5(14+3t) | | m=-4(5)+5 | | 10-q=9+3q | | m=-4m+5 | | F(x)=x2-225 | | 2p+5/3=1 | | 8v+8v=2v+42 | | 29=2+3r | | x=12/13=5/13 | | Y=3x^2+24x+36 | | 16=2t-4 | | 48-15d=18 | | Y(x)=3x^2+24x+36 | | -(5-t)=0(37t-12t+5(14+3t) | | K(x)=3x^2+24x+36 | | 5^(2x)-26×5^(x)+25=0 | | 2=14+3n | | 1/3e-9=5 | | 0=x^2+(128x/x^2) | | -2w+7=-7 | | 6y=y–20 | | x/x=7/24 | | 8h-9=39 | | 2/3x+1=5/2x | | (-2x^2+18)(3x+22)=0 | | x+22=2x-7 | | (-2x^2+6x-6x+18)(3x+22)=0 | | 2(7n-3)=120 |

Equations solver categories