If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+42x-112=0
a = 7; b = 42; c = -112;
Δ = b2-4ac
Δ = 422-4·7·(-112)
Δ = 4900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4900}=70$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-70}{2*7}=\frac{-112}{14} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+70}{2*7}=\frac{28}{14} =2 $
| |-2x+3x|=25 | | 3k^2-3k+9=0 | | 7y−8=3y | | -3x-7=4x+42 | | 5/12x-2=x+11/12 | | -2x5x-7=3x+6-7 | | 5x-10+30+11x=180 | | x^2-3x+0,5=25 | | 61-2x=12-10x | | 3=6c+14 | | 3x-7=4x+42 | | x^2-3x-0,5=25 | | 4x-3+145=2x+10 | | (5y+2)^2-48=0 | | 6=−r/3;r=−2 | | 2x^2-8=41 | | 2.4(g+1.2)=8.64 | | 16=2(v-4)+4v | | 2a-6-5=-19 | | 9u+1=6u+10 | | 9/4(b)+68/8=35/2 | | -9=-7w+2(w+3) | | 5x-8-8=4x-1-(-5x+x) | | 9/4(h)+68/8=35/2 | | i+13=-27 | | X=5(x+3)=4(x-3) | | -7=d-4 | | -9=-7+2(w+3) | | -9x+2=-4x-43 | | 2a-6-5=19 | | 7(x-6)+2x=-15 | | -2x2-11x+6=0 |