If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+4x=0
a = 7; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·7·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*7}=\frac{-8}{14} =-4/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*7}=\frac{0}{14} =0 $
| 5/7.a=25 | | 117+23+(11x-4)=180 | | 8-8n=-2(-4+4n) | | Y=-2x^2+60x-350 | | Y=2x^2+60x-350 | | 75+58+(3x+5)=180 | | 8x+9+8x9+6x+5+6x+5+10x-1=180 | | x-10.2=-11.8 | | 12(9+x)=-108 | | 57+(2x+13)+3x=180 | | -2(5+3m)+16=48 | | b~92=13 | | -(n-1)=5 | | 12.5+x=17.25 | | x+2/2=10 | | x^2+0.6x-0.55=0 | | 1.5k=9 | | 15y/10=20 | | 1.4t=3.5 | | 7x+5=12x–10 | | 38=19.7+d | | x+110=80 | | 32=0.5g | | 3p+1/4=-2 | | 10−2x7+x−414=27 | | 8-2x=59(x-4) | | 5(n=) | | 1.15+y=39 | | ((5x-16)^(3)-4)^(3)=216,000 | | 0.05x+15+180=0 | | z-31=45 | | 0.05x+15+180/x=0 |