If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+5x=0
a = 7; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·7·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*7}=\frac{-10}{14} =-5/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*7}=\frac{0}{14} =0 $
| 2x-101=-10x+127 | | x+11=73 | | 2(3x+8)+7=6x+23 | | 4.3x=x+10.3 | | 1/2(5•2h)=h/2 | | 5-4/7x=12 | | 3(k-2)=-(2k+16) | | 5j+3j-8j+j=7 | | 8x-6x+13=-4x+6x-12 | | -5+18x=14+12x | | 6.2-0.7x=0.5 | | 25n+1/10=1/2(n+4) | | 3x/5+4=34 | | 6(4-3x)=-18x+24 | | -5+18=14+12x | | 2(5v+3)-4(7v+3=-88 | | c/2+3.2=29.3 | | y+1/3=y+2 | | 13r-2r-10r-r+r=11 | | –2x+14-4x=7(2x-4) | | 2/3=3x-6/4x+17 | | F(x)=18x-13 | | Z^2-8z-4.2=0 | | -4/3+m=5/6 | | 8-3x=20+x | | 1+12v=10+4v | | 4x/7+2=26 | | 5.5x-17=13 | | 8-3x=20-x | | 3w-2w=13 | | -8(x)=4x-5 | | 63x+2687x-10=55(50x+25) |