If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+62x-9=0
a = 7; b = 62; c = -9;
Δ = b2-4ac
Δ = 622-4·7·(-9)
Δ = 4096
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4096}=64$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(62)-64}{2*7}=\frac{-126}{14} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(62)+64}{2*7}=\frac{2}{14} =1/7 $
| 3x(x-4)/x-0=0 | | 2x^2+x-312=0 | | 65=u+59 | | q+26=32 | | 83=s+95 | | 12v=81+3v | | 1/2r+4=r+10 | | 25=10y+6 | | 18x-2=308 | | 2x+44=6x+8 | | y^2+4y-70=0 | | 0.0000175=x^2+0.0000175x | | n+77=476 | | b-356=335 | | 18=s/21 | | y+336=863 | | w/21=18 | | v-102=373 | | g+18=45 | | k+23=100 | | 3x-2=x5 | | X+11=x-20=9 | | 8x-30=4x+60 | | 2x-10=1.5x | | 2x+10=1.5x | | (40-1.50)x=(9+1.50)x | | (40-1.50x)=9 | | (40-1.50x=9 | | 0.67x=0.9 | | 6x+1/15-2x-4/7x-16=2x+1 | | x^=46x | | H(x)=3x^2+11 |