If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+7x=0
a = 7; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·7·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*7}=\frac{-14}{14} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*7}=\frac{0}{14} =0 $
| -2m-4m=2/7 | | 4x+44=90 | | 3y=520 | | 22=2(b-17) | | 11n+2=6-9n | | (x+12)(x-6)=0 | | 8x+3=7x+x | | 6x-4x+3=11 | | z4=512 | | (x+12)(x-12)=0 | | 2x+5)(6x-1)=120 | | 34=7t | | (2x+5)x(6x-1)=120 | | (2x-12)(x-12)=0 | | 5.8g=2=3.8g+6 | | 6=-p+-9 | | 6x-4=7x+16 | | 7x+2x-5=22 | | 3x-6-2x=1 | | 2x+5/4+5x-6=2 | | 6x-4=7x+17 | | v/2-10=-8 | | x+4=212 | | (x+2/6)=(2x-10/8) | | 4d-32=-8 | | (2x+12)(2x-12)=0 | | 6k+3=6+9k | | x+(11/10)=(9/10)x | | 17+3x=-5+x | | 8+-4r=12 | | 5a+10=10(a=3) | | 18-5d=d+4 |