If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+8x-11=0
a = 7; b = 8; c = -11;
Δ = b2-4ac
Δ = 82-4·7·(-11)
Δ = 372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{372}=\sqrt{4*93}=\sqrt{4}*\sqrt{93}=2\sqrt{93}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{93}}{2*7}=\frac{-8-2\sqrt{93}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{93}}{2*7}=\frac{-8+2\sqrt{93}}{14} $
| 3/4(x+4/9)=23/4 | | Y=3.75+0.75x | | x/5=5/17 | | 3x+2+6x=10 | | 10.50(82)+3.75b=2071.50 | | 3(x+9)=7(x-1) | | 15(m+10)-129=3(5m+7) | | -w+279=152 | | 15x+18=13x-20 | | 5w^2+35=125 | | 50/r=10 | | 34=160-y | | 2.5d2d+4=10+2.5d2, | | 37−h=34 | | 3.2x−1.07=2.77 | | 5x+2+3x=10 | | -x+27=190 | | 2.7x−9.8=15.2 | | 34×13-88+x=408 | | 9(140-x)=x81 | | t/7+15=21 | | -7x+5=-3+2x | | 220=40-v | | t7+15=21 | | 48=-16t2+64t | | 6(x+2=66 | | 4m-8=-24 | | 12x+3-4x-3=5x | | -2a-5=3 | | y=110000(150)^2 | | 4(2=3c)+56 | | 2c−5=3 |