If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+8x-5=0
a = 7; b = 8; c = -5;
Δ = b2-4ac
Δ = 82-4·7·(-5)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{51}}{2*7}=\frac{-8-2\sqrt{51}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{51}}{2*7}=\frac{-8+2\sqrt{51}}{14} $
| X2+40x-329=0 | | –0.4w=4.2 | | 6/60=15/x | | 4p-11=19 | | s2+3s=-18 | | 2x^2+51=19 | | -3j+1=-14 | | 3x-1-4x=4-2 | | a2-4a-5=0 | | g2+3g=88 | | -3^2x-15x+72=0 | | x^2+5/3x+25/36=49/36 | | 5a+5=7a-1 | | 21=9x3 | | 36+9y=-10 | | 30=15+2k | | 5(2x+3)=3(4x+1)-2(3x=2) | | 2p-7=13+8p | | 8x-4=2x+56 | | (x/2)(4+8)=5((x/4)+3) | | 44+9x=1 | | 12-3b-5=-7 | | 2v-26=8(v-4) | | -5÷12d+64=-356 | | x+8=4x-37 | | (6*(x+10-))-x=10 | | 6x-(-10+6x)=10 | | (-3+2x)-2x+3=0 | | 4x²+52x-120=0 | | F(25)=2/5x+24 | | 5(y-8)=22 | | 6x^2–24x+1=0 |