If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-100=24
We move all terms to the left:
7x^2-100-(24)=0
We add all the numbers together, and all the variables
7x^2-124=0
a = 7; b = 0; c = -124;
Δ = b2-4ac
Δ = 02-4·7·(-124)
Δ = 3472
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3472}=\sqrt{16*217}=\sqrt{16}*\sqrt{217}=4\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{217}}{2*7}=\frac{0-4\sqrt{217}}{14} =-\frac{4\sqrt{217}}{14} =-\frac{2\sqrt{217}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{217}}{2*7}=\frac{0+4\sqrt{217}}{14} =\frac{4\sqrt{217}}{14} =\frac{2\sqrt{217}}{7} $
| 77+11y=99-77 | | 540=(10+2x)(20+2x) | | 5-4(n-12)=6n-12+3n | | -5(2x=6)+9x=-32 | | 3x1=2x+12 | | 7x+14=20x+118 | | 3+3b=b+1 | | 17-5r+9r=-12-6r-1 | | -7(n-7)+3n=49-7n | | (5x-1)+62=18x+11 | | 8(x=2)-4=28 | | 3y-7/4=-3/4y-4/3 | | 7(t+3)=2(t-9)+2t | | 7x+8x=-9 | | 4=9u-7u | | 0.13+(60,000-x)=6,000 | | 5=-r/3 | | 4(x-3)/6=2(x+7)/13 | | 3.4x-1.4x+14=3 | | 13(n)=169 | | 4x+8x-51=85-5x | | 3e+5=25 | | 2c-5c-8=2c-8 | | −2=−1(n−8) | | -2v-16=14-7+9 | | 5x-x²=9 | | 3x+9=9x+23 | | 2.25x=4.25 | | 8x+90=90 | | 3×+4(x-2)=6x-1+8(2x+3) | | -4(-9-2b)=9(-3b+4) | | 41=9v-4 |