If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-105=0
a = 7; b = 0; c = -105;
Δ = b2-4ac
Δ = 02-4·7·(-105)
Δ = 2940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2940}=\sqrt{196*15}=\sqrt{196}*\sqrt{15}=14\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{15}}{2*7}=\frac{0-14\sqrt{15}}{14} =-\frac{14\sqrt{15}}{14} =-\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{15}}{2*7}=\frac{0+14\sqrt{15}}{14} =\frac{14\sqrt{15}}{14} =\sqrt{15} $
| 8s–4s=16 | | 17x+50(x+12)=356 | | 10-4a=3-6a | | 8w-4w=6 | | 2÷3(6x-9)=-34 | | 2+v4=-2 | | 17x+50(x+12))=356 | | -8-y=10=5y | | 5x-2(1-x)=8 | | .2x+7=11 | | m/5-9/5=1/5 | | 8m-4=8m-3 | | 17x-8+x=24 | | 75=500(.5)x | | x(5x-9)=(5x+9)(x-4) | | 305x=185x+31080 | | 2p+7/3=p-2/5 | | 25x²+4=20x | | 5/x^2=7/(1-x)^2 | | 3p=-4+2p | | 8h-40=12h | | 3k=7k+5k | | 1÷2(4x-6)=11 | | 8.5x+4.4x-11=54 | | -12r^2-13r+60=0 | | 2(3-4(2x+1))=3(3x-2)+1 | | 3+s=4 | | 10+1250x=2500 | | 5+|t|=3 | | -5(4+8a)=260 | | 4x3+6x=9x2+1 | | -5/3b+4=5-3/5b |