If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-17x-20=0
a = 7; b = -17; c = -20;
Δ = b2-4ac
Δ = -172-4·7·(-20)
Δ = 849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{849}}{2*7}=\frac{17-\sqrt{849}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{849}}{2*7}=\frac{17+\sqrt{849}}{14} $
| 12f-14=41 | | 12x/2=36 | | 33-4=33-x | | 10x/2=26 | | 18x2-16x-18=0 | | 17x2-8x-20=0 | | 16x2-20x-8=0 | | 12x2+17x-19=0 | | 17x2-10x+13=0 | | 10x2-16x-20=0 | | 11x2+8x-17=0 | | 4x2-11x+8=0 | | 5b+13=2+1/3-4 | | -3/4x=75 | | 1.3xx4=24 | | x/7+28=31 | | 4f+2=6f+12 | | a/3-12=18 | | 15x2-3x-9=0 | | 4x2+7x-10=0 | | 13x2-16x+16=0 | | 2x2-2x-19=0 | | x2+8x-17=0 | | 19x2-15x+20=0 | | 10x2+16x+4=0 | | 7x2+9x+12=0 | | -20=5(v+2)-2v | | 16x2+14x+16=0 | | 5/6t=-2 | | 93+76+(11x-2)+(14x-7)=360 | | -6-2x=9-3x | | x=10+1/15 |