If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-19=44
We move all terms to the left:
7x^2-19-(44)=0
We add all the numbers together, and all the variables
7x^2-63=0
a = 7; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·7·(-63)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*7}=\frac{-42}{14} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*7}=\frac{42}{14} =3 $
| 6(h+17)-10=-34 | | 15x+10=145 | | h/8=15 | | 5x+3=215 | | 5y+3,4y+8=146 | | 3-2x=1/729 | | 1/2x-6=1/4 | | 64=2^(3x) | | 2n=3=27 | | 20a^2+41a-9=0 | | 5x-9+5×+5=76 | | 4/p6+27=39 | | x^2-0,25=0 | | 300=45+30x | | −3x−1=17 | | 2^(2x)-6*2^(x)-16=0 | | 6x+2x^2=4 | | X=-1/3y+1 | | -12y+15=3-10y+13 | | 10-2x^2=-64 | | 2(5x-7)=-16 | | -14.x=-252 | | 2xˆ2=40 | | 0=3x–9 | | -3/m=5.2 | | n^2=8n-94=2 | | x^2+.6x+.0000000000005=0 | | 4x^2-16C^2=0 | | x=-16x^{2}+79x+6 | | 6x^2=0x | | x^2+6x+.0000000000005=0 | | 75=3x-50 |