If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-19x=0
a = 7; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·7·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*7}=\frac{0}{14} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*7}=\frac{38}{14} =2+5/7 $
| 6x+5(2+3x)=3x-9+7x+8 | | (13x-15)-(9+6x)=3x | | -3(-1-5n)=-3+3(6n+8) | | 1.2-6x=-1.8 | | 1050=6(x+17) | | 7x=160,000+5x | | (13x-15)-(9+6x)=8x | | 100z^2+4=0 | | 4x-1+8x+8=2x+15 | | 12=4(x−5) | | 0.03y+200=0.03y+350 | | 9m+11m=60 | | 1500x=25x+300 | | 6u-24=3(u+6)-3 | | 4n-(5n+3n)=3+n-8 | | (0.25x^2)+x=0 | | C(x)=25x+300,C(1500) | | C(x)=25x+300 | | -3(-1-5n)=-3=3(6n=8) | | 1/2b=-2.75 | | (1/2)x(x+1)=171 | | 7x-5(x–4)=7(2x+1) | | 9p-(4p+16)=6-(2p-3) | | 9p-(4p+16)=6-(2p-3 | | 10m2–23m–5=0 | | 5x-1/2(3+8)=-4+3× | | 10m^2–23m–5=0 | | (1/2x)(x+1)=210 | | 0.9x2−3.9x−1.9=−3.4 | | 7+11p-3=6p+76-7 | | 10=9t2/5 | | 6-y=3y+30 |