If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-2x-9=0
a = 7; b = -2; c = -9;
Δ = b2-4ac
Δ = -22-4·7·(-9)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-16}{2*7}=\frac{-14}{14} =-1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+16}{2*7}=\frac{18}{14} =1+2/7 $
| 13=18y+1 | | 10=3x/28 | | 6x-6=3x+13 | | -2x+(x+7)²=0 | | 3(y+5)-2y=1 | | -x/2+5=0 | | x*10-132=x*4-12 | | x+2x-3=x+3 | | 6x-2=7+3x-12 | | 4.9=2.1x+2.3 | | 6x+10=12x+4 | | x(x-2)+7x-14=0 | | 11x-181=5x-13 | | 4(2x-3)=8-12 | | x2=-x | | (8-2x)(10+5)=0 | | 35x-42x2=0 | | 13x-52x2=0 | | 16/x=2,4 | | 8r-7=-39 | | 10=3x/31 | | 45x+9x2=0 | | 3(2x-11)=2(5-x) | | (x+3)^2=3x+13 | | 5x2-120x=0 | | 15-|x-3|=-2 | | 4x+12=-12- | | (2x+18)(9+x)=0 | | 7x+26=x+5 | | 3,2x+16,2=6,7x+5,7 | | 7(x+4)-3(x+1)=x+7 | | a+a=38 |