If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-343=0
a = 7; b = 0; c = -343;
Δ = b2-4ac
Δ = 02-4·7·(-343)
Δ = 9604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9604}=98$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-98}{2*7}=\frac{-98}{14} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+98}{2*7}=\frac{98}{14} =7 $
| 5(3y+3)=-25 | | 11x-8=10.5x+4 | | 34=6u+4 | | 180/5d=0 | | 5x=65536 | | 15/6x=-4 | | 13^x=15 | | -156=-6(4p-2) | | 2(x-3)=-3(x-2)+8 | | 2u+(-2)=8 | | 2(x-1)=14x | | (5x-3)*(4x+1)+(5x-3)^2=0 | | -4(v+4)+4v=-17-v | | -72=-9s-45 | | n–182= 1 | | (x-6)(7x+3)=-3 | | 4(4x+1)=-5(4x-3) | | 9–2q=1 | | 2p-5=-9 | | 7x=16807 | | 2z+2=4z | | 26x-2=10x+7 | | 6p+6=8p | | 8(7+4n)+7n=290 | | X+(x-5)+(x/4)=31 | | -64=40+8b | | 8m^2+48m=0 | | 1-8v=-5v+1 | | 7(1+7p)=-34+8p | | 32=36+4s | | 256=-2v+5(7v+5) | | 8-3m=100 |