If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-35=0
a = 7; b = 0; c = -35;
Δ = b2-4ac
Δ = 02-4·7·(-35)
Δ = 980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{980}=\sqrt{196*5}=\sqrt{196}*\sqrt{5}=14\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{5}}{2*7}=\frac{0-14\sqrt{5}}{14} =-\frac{14\sqrt{5}}{14} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{5}}{2*7}=\frac{0+14\sqrt{5}}{14} =\frac{14\sqrt{5}}{14} =\sqrt{5} $
| 0.5x+3=-9 | | 5(3x+9)-2x=15x-2(x-5)+10 | | -4c+9=9-4c | | -10-6h=-10-5h | | 10-8z=-8z+10 | | -4(2x-8)=5+7(-2x+7) | | -8f-8=-8f-9 | | -7q+6=6-7q | | 7(4x-2)=2(-3x-8)-24 | | 2(x+16=50 | | -2t+6=3-2t | | 2+(4x)/3(-7)=1 | | 5-h=-h | | x/15+16=17 | | 2f-4=3f+1 | | -4x+2x+2=x+1+x | | 4x+16+64=180 | | 20/8=72/a | | 15x=12x-3 | | x2+40x+39=0 | | 10x^2−5=35 | | 2x+4x-30=90 | | 5u-20-2u=-17 | | 90=10b-5 | | -2=r-10/13 | | -2=r-1013 | | x+x+2+x+3=86 | | −0.6+4.9x=−20.2 | | n-4=-23 | | (x+27)+(2x-7)=180 | | 4v+20-2v=12 | | -152=19n |