If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-42=0
a = 7; b = 0; c = -42;
Δ = b2-4ac
Δ = 02-4·7·(-42)
Δ = 1176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1176}=\sqrt{196*6}=\sqrt{196}*\sqrt{6}=14\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{6}}{2*7}=\frac{0-14\sqrt{6}}{14} =-\frac{14\sqrt{6}}{14} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{6}}{2*7}=\frac{0+14\sqrt{6}}{14} =\frac{14\sqrt{6}}{14} =\sqrt{6} $
| (3f+2)(4f–1)=0 | | 5m2-11m-12=0 | | 4x2–8x–5=0 | | 3x2–12x+12=0 | | 4x-79=-5x+137 | | 2+(2x−3)=3−2x | | 3(2y+1)=(y+2) | | x^2+8x-9=-16 | | 2a-3=4a-5 | | 200-x=x-100 | | 4(b+3)=2(b+4 | | (2x2+2x-12)/(x-2)=0 | | 3x-3=10x-21 | | -143-9x=x+57 | | 5x^2+24x+144=0 | | X+17x=162 | | 14x-18=3(2x+9) | | 6(3x+6)=4(5-2) | | 4(7x/2+2)=-20 | | (10b-5)-3(3b+3)=-2 | | 6(8h-3)=-24 | | x/3-4/x=2 | | 3x+2(-x+3=17 | | A=(8x+5)(10x-4) | | 5/6(t)+4=2-1/6(t) | | 2n+17=19 | | 13x/12=x+4 | | 10-3p=21-5p | | 5/6t+4=2*1/6t | | 8x+5=12x+50 | | 9=1/6v+8 | | 9w-14=5(w+2) |