If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-43=20
We move all terms to the left:
7x^2-43-(20)=0
We add all the numbers together, and all the variables
7x^2-63=0
a = 7; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·7·(-63)
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1764}=42$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-42}{2*7}=\frac{-42}{14} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+42}{2*7}=\frac{42}{14} =3 $
| 9y-1=31+1 | | X+x-16=38 | | 13y+200=23y | | -3y-20=7y | | x2–3=4x+2 | | x+42=x−1 | | 2x+6=5x-2=4x+2 | | x²+8x-216=0 | | Y=15787t+22815 | | 4(x-3)+7-2x=5x | | 9x=x+88 | | 4x3=11 | | x^2+13x54=0 | | 3=-x+9 | | 2*5x=480 | | 5x-7=-2x-12 | | 5x=211,5 | | 5x/6+2/9=2-2x/3 | | (7z+6)(8+7z)−49z−99z−49=0 | | (7z+6)(8+7z)−49z−99z−49=0 | | (7z+6)(8+7z)−49z2−99z−49=0 | | -9(x-5)=6=-12 | | x²+6x-9=0 | | 3^2^(x-1)=81 | | 15x=9x+30 | | 3^2(x-1)=81 | | x5=-248 | | 2-0-2x=-10 | | x*x-2=440 | | 7^4x=49 | | 6y-18=4y-5+5y | | 6y-18=4y-5=18 |