If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-4x-56=0
a = 7; b = -4; c = -56;
Δ = b2-4ac
Δ = -42-4·7·(-56)
Δ = 1584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1584}=\sqrt{144*11}=\sqrt{144}*\sqrt{11}=12\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-12\sqrt{11}}{2*7}=\frac{4-12\sqrt{11}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+12\sqrt{11}}{2*7}=\frac{4+12\sqrt{11}}{14} $
| 14k-8=4(3k+3) | | -5b=0 | | 4.5=4^x | | 5(x+1)=5+5x | | 2(-5)+10y=30 | | 4(5x+3)=-4(3x-4)+3x | | 8x=130-5x | | 32=-4r | | -24-6n=-2(5n-4) | | -2(5x-6)+11=43 | | 38+7x=2(7x+5) | | 66+4y=8y+8+6y+8 | | 5x+8x+2x+9=180 | | 9=k/10 | | 4(5+5x)-5x=-3x-34 | | -9/4x+4/5=7/8 | | 5(3x+1)=-2(5x-3) | | (2n-2)^2=36 | | 1/8x-7=3/8x+3 | | 2u=-3 | | 10x-36=8x-16 | | 6^(2x)=48 | | (-3(2x+5))/4=6 | | 3x=-2x/5+34/5 | | -2x+-6=10x+15 | | 3x=-2x+34/5 | | -x+x/3+2x-5=-1+3x-2x/3 | | 61+9y=10y+20+6y+20 | | -2x+-6=10x+3 | | x=2x+34/15 | | 4(45-2y)+8y=180 | | -x+x/3+2x-5=-1+3x-2x |