If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-5=23
We move all terms to the left:
7x^2-5-(23)=0
We add all the numbers together, and all the variables
7x^2-28=0
a = 7; b = 0; c = -28;
Δ = b2-4ac
Δ = 02-4·7·(-28)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28}{2*7}=\frac{-28}{14} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28}{2*7}=\frac{28}{14} =2 $
| -21-9x=24x+12 | | 7x+3(5x-4)=404 | | 116+30+x=180 | | 1/8d=6 | | y/0.34=4.7 | | 1/7q=-8 | | 2x-1=4, | | 27-4r=r | | 8+10x+11-33=1x+2x+11 | | 7.6x15=144 | | 1/6r=10 | | X-3/2=x+6/5 | | 4(-8x+5)=(-33x-26) | | 1/2(6x-4=10 | | 24=17-7a.a= | | 30=80-x | | x.4(3x-1)+7-x=2x+3+9x | | 7x+5=-11x-18 | | 3(33-2z)=60 | | 10x+58+260-16x+90°=180 | | -y+5=11 | | 2x+13=4×-1 | | 5(3+4w)=65 | | (10x+58)+(260-16x)+90°=180 | | q/6=-9 | | 0.23d=2.53 | | 0.24f=3.84 | | 0.21f=3.15 | | 0.16d=4.96 | | 0.18d=3.78 | | (130-3x)+(5x+25)+(6x+5)=180 | | .2y+8=22 |