If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-6x-16=0
a = 7; b = -6; c = -16;
Δ = b2-4ac
Δ = -62-4·7·(-16)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-22}{2*7}=\frac{-16}{14} =-1+1/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+22}{2*7}=\frac{28}{14} =2 $
| 4x+8=7.2 | | -8-5x+7x=8 | | 0.25+0.50+x=-0.75 | | b/5+1/8=11 | | d/3+10=13 | | 20x-15=15x+15 | | (7-4x=9) | | 49y^2+14y+1=0 | | 3x-3=18-5x+5 | | f/3+4=6 | | 9x+38=9x+38 | | 16-7x=-3x=2 | | 6(c)-5=37 | | (27/y^2)-y=0 | | -12=4x+3x+2 | | g/4+3=6 | | X²+5x-2=(x-4)² | | w+13=16.0 | | 2x^2-0,5=0 | | c^2+81=0 | | 20=8+2p | | -14=5x-x-10 | | -3x+7-7x=37 | | 2/3+3m/8=27/24 | | 8x^2=3,2x | | M+4(m-2)=7 | | -21x−5=-40 | | 3x-2=2(2x+5) | | x2-4x+10=7 | | |2x-3|=4x-1 | | 3(3w–6)=18 | | 8•g=-32 |