If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-8x-9=0
a = 7; b = -8; c = -9;
Δ = b2-4ac
Δ = -82-4·7·(-9)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{79}}{2*7}=\frac{8-2\sqrt{79}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{79}}{2*7}=\frac{8+2\sqrt{79}}{14} $
| 3(v-5)-4=-5(-4v+5)-8v | | -7n-4=n-7n | | 3/2=3.5x | | 5(w-9)=-6w-23 | | 5(11x-17)=115 | | 12.84+0.09(x+3)=13.34-0.12x | | 5(w-8)=-6w-23 | | -17+6x=29 | | 7x2+2x-8=0 | | 5(-3x+24)=15x | | 2/3x-(-2/3)=3/5 | | 19=-7v+5(v+3) | | 7x+18=9x-14 | | 17x2-21x+4=0 | | 4x/14-(-5/7)=3/7 | | 5a^2+7a-2=0 | | -3x-7=−8x−57 | | 5x-4(2+4x=14 | | (8y)^{2}(y=5) | | 4(-3x+5)=-12x+20 | | X+3/8x+23=100 | | 6x-(-9)=15 | | 7x-2+5x+14=180 | | 3z+15=50 | | 14x−5=10x+31 | | 4x-17+65=180 | | 6x−14=9x−5 | | -5x-5=-3x+5 | | 6x−2x2=3x+5x2 | | 3y+8+9y+1=180 | | -7x-4=-10x-10 | | 1.8=2b-2.2 |