If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2-90x+260=0
a = 7; b = -90; c = +260;
Δ = b2-4ac
Δ = -902-4·7·260
Δ = 820
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{820}=\sqrt{4*205}=\sqrt{4}*\sqrt{205}=2\sqrt{205}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-2\sqrt{205}}{2*7}=\frac{90-2\sqrt{205}}{14} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+2\sqrt{205}}{2*7}=\frac{90+2\sqrt{205}}{14} $
| 6–4x=4(3–x)–6 | | 16,1+2x=2,4+7x | | n-8=-40 | | 9x-6=2121= | | 74.6+c=83 | | 0,15x=96 | | 18-1.9z=7.32 | | 0,25x=96 | | 11g−3g=8 | | 8x-4x-5=3 | | (8x)+(15x+19)=180 | | 3z/8+1=-4 | | 10(7x-50=300 | | 3z7+2=4 | | 1/2(x+6)-1/7(x-7)=x+8 | | 5(w-3)-7w=1 | | 3+-13x+4x^2=0 | | 20y+8=4 | | y+5/8+4=-16 | | −5(p+5/3)=−4 | | 0.4x1.2=xx2.5 | | 6x+61=8x-31 | | 5(y−63)=95 | | 600=6a^2 | | 2(3)(4x)-2(3)(55x)=6 | | x/4+3=x/3 | | (4x+8)=(3x+6) | | x+4/4+x/3=6 | | 6s^2+s-4=0 | | 5x-2=12-2 | | (4x+)=(3x+6) | | -12=-8z=+12 |