If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=19x
We move all terms to the left:
7x^2-(19x)=0
a = 7; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·7·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*7}=\frac{0}{14} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*7}=\frac{38}{14} =2+5/7 $
| 5r+40/15=4r-24/4 | | (4x+1)(3x-7)-2x(6x+5=0 | | 51+7-x=36 | | x-475=261 | | X2+36=13x | | t+4/7=5-4/7 | | -63=3-3(2-4p) | | -16+5x=8x+12 | | 200=5(4+6v) | | h2-6h=16 | | h^2-6h=16 | | 4(2x-3)-2=4(x-5)+26 | | 4x-2x+9=13 | | y=-6.5+15 | | 4+5x=-2 | | 3(2x+1)=17 | | 2x+30=-20-x | | 7(x+2)(x-40)=-2 | | (8-x)^2=(2x+4)(1-x) | | (x+3)-5=0 | | 26d/7+6=19 | | 2x+5x-18=3 | | x+(3x-7)=4 | | 10=27s/8-8 | | 3n+2/3=15/3 | | 6-2x^2=4x | | 17e-3/4=39/16 | | 15=5k/9-15 | | 1x/6+9=-2 | | 9t/16-3/8=-3/8 | | a²-3a-10=0 | | (-5)-(2)y=-1 |