If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=61
We move all terms to the left:
7x^2-(61)=0
a = 7; b = 0; c = -61;
Δ = b2-4ac
Δ = 02-4·7·(-61)
Δ = 1708
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1708}=\sqrt{4*427}=\sqrt{4}*\sqrt{427}=2\sqrt{427}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{427}}{2*7}=\frac{0-2\sqrt{427}}{14} =-\frac{2\sqrt{427}}{14} =-\frac{\sqrt{427}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{427}}{2*7}=\frac{0+2\sqrt{427}}{14} =\frac{2\sqrt{427}}{14} =\frac{\sqrt{427}}{7} $
| 7+8q=-7q+7 | | 36x^2+6x-12=0 | | 11x+118=15x+4+2x | | 31=19-2x | | y=(3(12)-13)+(2(10.5)-5) | | 3x=70/24 | | 2n+3+6n=-23 | | (3+y)/4=(-y+2)/8 | | 1/7y=6=-19 | | 7+r/3=4 | | -3x+36=-9x | | 23=8+3x | | 3m=-2+2m | | 7+3t=6+t | | x=(7+9)+(11+12) | | 3f+20=4f | | 3+y/4=-y+2/8 | | 19+2b=-20+5b | | (4x+2)=x-1 | | -59=32-13y | | -7(x-12)=-56 | | 7+3t=5+1/1t | | 7x-9=-4+90 | | 4+n-9=-9+1/2n+12 | | 6+4k=4k+6 | | Y(y+1)^2(y-2)=0 | | 9x-11=-5x+3 | | 2x-108=34 | | -4(3x-6)=2(-6x+10)+4 | | 14/8=b+5/8 | | (2+2i)-(6+6i)=0 | | f(1)=√1−2 |