If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2=777
We move all terms to the left:
7x^2-(777)=0
a = 7; b = 0; c = -777;
Δ = b2-4ac
Δ = 02-4·7·(-777)
Δ = 21756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{21756}=\sqrt{196*111}=\sqrt{196}*\sqrt{111}=14\sqrt{111}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{111}}{2*7}=\frac{0-14\sqrt{111}}{14} =-\frac{14\sqrt{111}}{14} =-\sqrt{111} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{111}}{2*7}=\frac{0+14\sqrt{111}}{14} =\frac{14\sqrt{111}}{14} =\sqrt{111} $
| x/8x=168* | | 2(x+3)+2(x+4=24 | | 5m+2(m=1)=23 | | x+1=0.75(x+3) | | 16.50b=49.50 | | 43-10p=58 | | 3+7/8x=18+1/6 | | q×q×74=74q2 | | x+8=-6x+6 | | 208=−8(6a−2) | | 5(4k-2)=40 | | 3+7/8x=18-1/6 | | 3-7/8x=18-1/6 | | 15=u-5 | | M-19x=114 | | 6x+3x=35+10 | | 2.5x+12=8 | | 3x-7/8=18-1/6= | | 2(x-2)+2(x+3)=8 | | t2+11t+24=0 | | 3x+7/8=18+1/6 | | 2+0.3x=-2(4-x) | | -3(4+5n)=-117 | | 254.03=7(0.05m+24.80+0.30(24.80)) | | 1/3x=1/x+(2x+5)/3x^2 | | 7x-25=-13 | | 9r+3–6r–2=–2r+16 | | 397.17=9(0.09m+30.70+0.20(30.70)) | | 0.3(6+x)=-2(4-x) | | 12+n÷2=18 | | s2+38s=0 | | 270=7r |