If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+10y+3=0
a = 7; b = 10; c = +3;
Δ = b2-4ac
Δ = 102-4·7·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4}{2*7}=\frac{-14}{14} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4}{2*7}=\frac{-6}{14} =-3/7 $
| t=96+2 | | y+11/25=-3/25 | | 932=y+736 | | 3j−5=1 | | 6=3(2x-4 | | 3x-2/4=5/2 | | 5x+3=2(4x-5)-2 | | 72=(5x-4)(x+10 | | 4−2j=2 | | f=40-21 | | 3/4x+1/4x=90 | | 5(12-x)+9x=28+7x+(3x-4) | | 20x-20=40 | | 8(c-21)=-21 | | 60+x/3=84+x/15 | | 49a2+-121=0 | | 5(12-x)+9=28+7x+(3x-4) | | 8(c-12)=21 | | (2b-9)+b+(1.5(b+2))=75 | | 3x+5=14.50 | | -2(x+1)+x=2x+3-(-1) | | |2y-1|=|1-2y| | | (4,3)m=1 | | (2b-9)+b+(1.5(b+2)=75 | | -7x+3(2x-4)=-11-2x | | c(20)=80+20 | | (4,-3)m=1 | | (3x+2)+71=90 | | 2b+b+1.5b=82 | | x-32=12 | | 11m+m=1/4m-2m | | (3x^2-x)/2=22 |