If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+18y+8=0
a = 7; b = 18; c = +8;
Δ = b2-4ac
Δ = 182-4·7·8
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-10}{2*7}=\frac{-28}{14} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+10}{2*7}=\frac{-8}{14} =-4/7 $
| 3(5+c)-2c=8 | | 220^t=200*1.1^t | | 7y2+18y+-8=0 | | 6(x+-4)+3x=12x+-8 | | 4m+12=-18+2m | | 20+20+2y=8y-20 | | 7d=8d+7 | | -7r-8+8r=8+3r | | 19v=20v+16 | | -19v=20v+16 | | z/8+6=8 | | 2x=3x=5x+3 | | 2x3-2x=x^2-1 | | -4u+8=-6u-6 | | 8z-6=-2+6z | | 3y-25=52 | | 7h-4+5=3h+9 | | s*7-27=141 | | 8=(x-2) | | 41=4x^-1/3+40 | | 3=(m+9) | | 2x+3x+6=46 | | 4x+2x+3=39 | | 180=5x+(2x+4) | | x+210=180 | | (2x+20)x=0 | | 3=-6+u/3 | | 2/7x+3/7x=2 | | 12y-38=38 | | 7f+2(f–1)=79 | | 2x/3=3/2x | | m/2=3/4 |