If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2+22y-24=0
a = 7; b = 22; c = -24;
Δ = b2-4ac
Δ = 222-4·7·(-24)
Δ = 1156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1156}=34$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-34}{2*7}=\frac{-56}{14} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+34}{2*7}=\frac{12}{14} =6/7 $
| 2/3b+5=10-1b | | -7=3y-4 | | 1.5+0.2=0.6x-7.3 | | 2/3b+5=10-b | | 21-2x=5x+7 | | 841=x^2 | | 18=3(1+12x)=230 | | 5+w/5=-30 | | 3x+2(-x-18)=-30 | | 19=17+4w | | 2x4=98 | | (8x-6)-80=90 | | 3x2=x2+25 | | 4x+9=51 | | 3u+9=60 | | x-4x13=4 | | 11x=x=50 | | (8z-11)(2-z)=0 | | 2/5x-7=12/5x-2x+13 | | 12t-(5t*t)=17 | | −24=-6-6x | | 3(7x+14=84 | | 1/2(8x-6)+2x=39 | | X=4x+4+4x+4+2.5x+8+2.5x+8 | | 32=-4-12w | | -3x+50=10x-9 | | 13u-6u=21 | | 2x111=5x+10 | | −40=24+8x | | 288-w=106 | | (-4,-4);m=5 | | X/0.4=2x+1.24 |