If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-25=2y^2
We move all terms to the left:
7y^2-25-(2y^2)=0
We add all the numbers together, and all the variables
5y^2-25=0
a = 5; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·5·(-25)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{5}}{2*5}=\frac{0-10\sqrt{5}}{10} =-\frac{10\sqrt{5}}{10} =-\sqrt{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{5}}{2*5}=\frac{0+10\sqrt{5}}{10} =\frac{10\sqrt{5}}{10} =\sqrt{5} $
| 2(9x+3)=3(1+6x) | | I4x+8I=20 | | 3(8x-6)=4(6x-4,5) | | 12x2-5=-6x2+3 | | 64+6=t | | 4x=88x= | | X²-15x-18000=0 | | -6x-29=5x+26 | | 8/14=n+7/14n | | 18x-3=16x+4 | | 7x1=50 | | s-4.1=185 | | s-4.1=186 | | 2r=+3 | | x2=10x+21=0 | | 3x2-2x=2x | | 5x+3x+44=180 | | 5.8=n2.1 | | Y=-3x^4 | | -7x-30=8x+15 | | x-18=5x-50 | | X+2d=12 | | -7x-39=-x-9 | | -6x+17=-9x+26 | | 81/3•y+4/5=9/10 | | 2x-4=-6x+44 | | x2+13x+15=2x+5 | | 8x-55=5x-31 | | 2y^2-12y+36=0) | | 13-7x;x=-11 | | -8x-72=-5x-48 | | F(x)=(8x2-4x+1)4 |