If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-63y=0
a = 7; b = -63; c = 0;
Δ = b2-4ac
Δ = -632-4·7·0
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-63)-63}{2*7}=\frac{0}{14} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-63)+63}{2*7}=\frac{126}{14} =9 $
| x=80=1(10) | | 15x+12=x+54 | | 9v+2=92-v | | x+4x-150=180 | | 5x3x=-20 | | 15x+11=10x+36 | | 6x+120=51x+12 | | 5x-17=7x-3 | | 3x(3+7x)=0 | | 4z/10+2=-3 | | x4+4=3x+19 | | 4x+3+x=3+5x | | 4x+3+x=3+5 | | 2a-56=12 | | x×4+16=52 | | 4a+13=45 | | 5.5n=-104.5 | | 10^(5x+2)=1000^(x-2) | | 45/y=15 | | 4p+13=45 | | r/3=-4 | | 4x+1=1x+5 | | 6x+3/9=-1 | | 3a-4=34 | | 4b+75=983 | | 8t–2=14 | | 4x+8x+19=139 | | 11x-92=22x+7 | | 10-11x=11x+10= | | 8y-(4y-3)=35 | | 5m-4/9=4 | | 12y+6+32y=2y–6y–30 |