If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7z^2+6z=0
a = 7; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·7·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*7}=\frac{-12}{14} =-6/7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*7}=\frac{0}{14} =0 $
| (x+1)(x-3)=2x(x+3) | | 4g=-3g-7 | | 2.2y+8.2=4.2y-3.1 | | 9x2–4=0 | | ‐5x – 3 =2x – 18 | | 9w2+3=0 | | -27m=m/9 | | 30x/5x=6* | | 3r-7=-37 | | 4x+10=17x-43=180 | | 5=–2r2 | | 7-2a=17 | | 3p2–6=0 | | 6r2+7r=0 | | 8r2+7r+3=0 | | z2+3z+6=0 | | 50=50/2x | | 4-2*x=x+3 | | (21x+20)=(13x-10) | | 9y-4=94 | | 2(x+3)=2(x+3)=22 | | 17(d+13)=–17 | | 3x-9x+4=16 | | v2+2v–1=0 | | p+7p-5p=24 | | 2r2+7r+1=0 | | 21x+20=13x-10 | | 2(3x-10)=9 | | 3-2(2x=1)=x+17 | | 4x+70+2x+100+130=180 | | 3/1=4/x | | -j+3=8 |