If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7z^2-20z-3=0
a = 7; b = -20; c = -3;
Δ = b2-4ac
Δ = -202-4·7·(-3)
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-22}{2*7}=\frac{-2}{14} =-1/7 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+22}{2*7}=\frac{42}{14} =3 $
| -3/5x-7/15x+1/3x=-55 | | x(x-6)(-4x+1)=0 | | 20=4*t | | -18v=52 | | 69+90+x=180 | | 13x-9x=24 | | 32+x=-72 | | 5x(-2x-3)=0 | | k2+8k=0 | | -67=45z | | 2a+4+5a=5+2a | | 9x+4-6x=76 | | 1/4=h+3/7 | | R=2x-7 | | 95=r-85 | | R=x+9-x | | -12^2n-11n+15=0 | | -43=g12 | | 4×9-5y+33=0 | | 65=d54 | | -0.62x+0.42x=5.4 | | 2=8j-6j | | 23=53+t | | -x^2+9x-1062=0 | | -76=-1.3k | | 12=4e+8e | | -0.48x+0.28x=6.4 | | 12-3z=18 | | 37+a=47 | | -9g+19=(-14-17g) | | 3x/7=1–x | | -3.7=v0.2 |