8(2x+1)3x+4=4x+3

Simple and best practice solution for 8(2x+1)3x+4=4x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(2x+1)3x+4=4x+3 equation:


Simplifying
8(2x + 1) * 3x + 4 = 4x + 3

Reorder the terms:
8(1 + 2x) * 3x + 4 = 4x + 3

Reorder the terms for easier multiplication:
8 * 3x(1 + 2x) + 4 = 4x + 3

Multiply 8 * 3
24x(1 + 2x) + 4 = 4x + 3
(1 * 24x + 2x * 24x) + 4 = 4x + 3
(24x + 48x2) + 4 = 4x + 3

Reorder the terms:
4 + 24x + 48x2 = 4x + 3

Reorder the terms:
4 + 24x + 48x2 = 3 + 4x

Solving
4 + 24x + 48x2 = 3 + 4x

Solving for variable 'x'.

Reorder the terms:
4 + -3 + 24x + -4x + 48x2 = 3 + 4x + -3 + -4x

Combine like terms: 4 + -3 = 1
1 + 24x + -4x + 48x2 = 3 + 4x + -3 + -4x

Combine like terms: 24x + -4x = 20x
1 + 20x + 48x2 = 3 + 4x + -3 + -4x

Reorder the terms:
1 + 20x + 48x2 = 3 + -3 + 4x + -4x

Combine like terms: 3 + -3 = 0
1 + 20x + 48x2 = 0 + 4x + -4x
1 + 20x + 48x2 = 4x + -4x

Combine like terms: 4x + -4x = 0
1 + 20x + 48x2 = 0

Begin completing the square.  Divide all terms by
48 the coefficient of the squared term: 

Divide each side by '48'.
0.02083333333 + 0.4166666667x + x2 = 0

Move the constant term to the right:

Add '-0.02083333333' to each side of the equation.
0.02083333333 + 0.4166666667x + -0.02083333333 + x2 = 0 + -0.02083333333

Reorder the terms:
0.02083333333 + -0.02083333333 + 0.4166666667x + x2 = 0 + -0.02083333333

Combine like terms: 0.02083333333 + -0.02083333333 = 0.00000000000
0.00000000000 + 0.4166666667x + x2 = 0 + -0.02083333333
0.4166666667x + x2 = 0 + -0.02083333333

Combine like terms: 0 + -0.02083333333 = -0.02083333333
0.4166666667x + x2 = -0.02083333333

The x term is 0.4166666667x.  Take half its coefficient (0.2083333334).
Square it (0.04340277781) and add it to both sides.

Add '0.04340277781' to each side of the equation.
0.4166666667x + 0.04340277781 + x2 = -0.02083333333 + 0.04340277781

Reorder the terms:
0.04340277781 + 0.4166666667x + x2 = -0.02083333333 + 0.04340277781

Combine like terms: -0.02083333333 + 0.04340277781 = 0.02256944448
0.04340277781 + 0.4166666667x + x2 = 0.02256944448

Factor a perfect square on the left side:
(x + 0.2083333334)(x + 0.2083333334) = 0.02256944448

Calculate the square root of the right side: 0.150231303

Break this problem into two subproblems by setting 
(x + 0.2083333334) equal to 0.150231303 and -0.150231303.

Subproblem 1

x + 0.2083333334 = 0.150231303 Simplifying x + 0.2083333334 = 0.150231303 Reorder the terms: 0.2083333334 + x = 0.150231303 Solving 0.2083333334 + x = 0.150231303 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2083333334' to each side of the equation. 0.2083333334 + -0.2083333334 + x = 0.150231303 + -0.2083333334 Combine like terms: 0.2083333334 + -0.2083333334 = 0.0000000000 0.0000000000 + x = 0.150231303 + -0.2083333334 x = 0.150231303 + -0.2083333334 Combine like terms: 0.150231303 + -0.2083333334 = -0.0581020304 x = -0.0581020304 Simplifying x = -0.0581020304

Subproblem 2

x + 0.2083333334 = -0.150231303 Simplifying x + 0.2083333334 = -0.150231303 Reorder the terms: 0.2083333334 + x = -0.150231303 Solving 0.2083333334 + x = -0.150231303 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.2083333334' to each side of the equation. 0.2083333334 + -0.2083333334 + x = -0.150231303 + -0.2083333334 Combine like terms: 0.2083333334 + -0.2083333334 = 0.0000000000 0.0000000000 + x = -0.150231303 + -0.2083333334 x = -0.150231303 + -0.2083333334 Combine like terms: -0.150231303 + -0.2083333334 = -0.3585646364 x = -0.3585646364 Simplifying x = -0.3585646364

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.0581020304, -0.3585646364}

See similar equations:

| 5-7k=1-8k | | log(x)=0.42 | | 10ab+9-2ab= | | x^4-3x^2+34=0 | | 48-1x=4x-7 | | 3(y+2)=-2(8y-6)+4y | | 0.001x+0.0002=0.003y | | 5+.40x=-2 | | (3k^3)/(5k) | | 100+100+60+84= | | -124=-11x | | 2-7[1+3c]=15 | | Log(8)32768=x | | 3e-19=-3(e+2) | | -40=-6s | | 7/6c-c-6=0 | | -9y=14-2x | | a^2+4-b=0 | | 8+x^3+-4x+-2x^2=0 | | -21-16= | | -11(x-1)=2x+6x-8 | | 3x(x-5)-x^2=50 | | P-2=-5+p+7+p | | 4x-18x+16=8 | | 3(1-8x)=-2x+3 | | 3Z-41=Z+35 | | 5(2x+3)-3x=43 | | 54x+20(30+10)=65 | | -11(x?1)=2x+6x-8 | | 3+1t=37 | | t=6(1.8)squared | | (11)(-4)= |

Equations solver categories