If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 8(3m + 5) * 2m = -4 Reorder the terms: 8(5 + 3m) * 2m = -4 Reorder the terms for easier multiplication: 8 * 2m(5 + 3m) = -4 Multiply 8 * 2 16m(5 + 3m) = -4 (5 * 16m + 3m * 16m) = -4 (80m + 48m2) = -4 Solving 80m + 48m2 = -4 Solving for variable 'm'. Reorder the terms: 4 + 80m + 48m2 = -4 + 4 Combine like terms: -4 + 4 = 0 4 + 80m + 48m2 = 0 Factor out the Greatest Common Factor (GCF), '4'. 4(1 + 20m + 12m2) = 0 Ignore the factor 4.Subproblem 1
Set the factor '(1 + 20m + 12m2)' equal to zero and attempt to solve: Simplifying 1 + 20m + 12m2 = 0 Solving 1 + 20m + 12m2 = 0 Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. 0.08333333333 + 1.666666667m + m2 = 0 Move the constant term to the right: Add '-0.08333333333' to each side of the equation. 0.08333333333 + 1.666666667m + -0.08333333333 + m2 = 0 + -0.08333333333 Reorder the terms: 0.08333333333 + -0.08333333333 + 1.666666667m + m2 = 0 + -0.08333333333 Combine like terms: 0.08333333333 + -0.08333333333 = 0.00000000000 0.00000000000 + 1.666666667m + m2 = 0 + -0.08333333333 1.666666667m + m2 = 0 + -0.08333333333 Combine like terms: 0 + -0.08333333333 = -0.08333333333 1.666666667m + m2 = -0.08333333333 The m term is 1.666666667m. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667m + 0.6944444447 + m2 = -0.08333333333 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667m + m2 = -0.08333333333 + 0.6944444447 Combine like terms: -0.08333333333 + 0.6944444447 = 0.61111111137 0.6944444447 + 1.666666667m + m2 = 0.61111111137 Factor a perfect square on the left side: (m + 0.8333333335)(m + 0.8333333335) = 0.61111111137 Calculate the square root of the right side: 0.78173596 Break this problem into two subproblems by setting (m + 0.8333333335) equal to 0.78173596 and -0.78173596.Subproblem 1
m + 0.8333333335 = 0.78173596 Simplifying m + 0.8333333335 = 0.78173596 Reorder the terms: 0.8333333335 + m = 0.78173596 Solving 0.8333333335 + m = 0.78173596 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + m = 0.78173596 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + m = 0.78173596 + -0.8333333335 m = 0.78173596 + -0.8333333335 Combine like terms: 0.78173596 + -0.8333333335 = -0.0515973735 m = -0.0515973735 Simplifying m = -0.0515973735Subproblem 2
m + 0.8333333335 = -0.78173596 Simplifying m + 0.8333333335 = -0.78173596 Reorder the terms: 0.8333333335 + m = -0.78173596 Solving 0.8333333335 + m = -0.78173596 Solving for variable 'm'. Move all terms containing m to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + m = -0.78173596 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + m = -0.78173596 + -0.8333333335 m = -0.78173596 + -0.8333333335 Combine like terms: -0.78173596 + -0.8333333335 = -1.6150692935 m = -1.6150692935 Simplifying m = -1.6150692935Solution
The solution to the problem is based on the solutions from the subproblems. m = {-0.0515973735, -1.6150692935}Solution
m = {-0.0515973735, -1.6150692935}
| 5x-7(2x-3)-4= | | -62=0.4+4x | | tan=31 | | 6n-3-2n=10 | | 60=x+x+6+2+2x-6 | | 7x+51=9x+23 | | -5(n-6)=-4(n-7) | | 5n-7=3n+2 | | -7(v+2)+3v+7=5v+8 | | 67=-7x+11 | | 3*4n=24 | | 15=4c+3 | | x^2+16x+64-x^4= | | -356=-13x-18 | | (15-5)*2= | | 2x+16=5x+10 | | 3+2b=9 | | 2n+21+4n+15=180 | | -63x^2-19x+30=0 | | (4-2x)=0 | | 4+8v=-8v+-2 | | ln(x)+ln(7x)=-3 | | -9-13x=199 | | 2ax+2by=118 | | 1(x+5)=0 | | ln(x)+kn(7x)=-3 | | -18x=x+22 | | 5x+9-2x=1+3x+8 | | 13=y-5x | | 8(2+r)=-200 | | 60=x+x+7+2+2x-7 | | 47-3k=10(-6+10k)+4k |