8(7/4p-3)=8(2+4/8p)

Simple and best practice solution for 8(7/4p-3)=8(2+4/8p) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(7/4p-3)=8(2+4/8p) equation:



8(7/4p-3)=8(2+4/8p)
We move all terms to the left:
8(7/4p-3)-(8(2+4/8p))=0
Domain of the equation: 4p-3)!=0
p∈R
Domain of the equation: 8p))!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
8(7/4p-3)-(8(4/8p+2))=0
We multiply parentheses
56p-(8(4/8p+2))-24=0
We multiply all the terms by the denominator
56p*8p-24*8p+2))-(8(4+2))=0
We add all the numbers together, and all the variables
56p*8p-24*8p+2))-(86)=0
We add all the numbers together, and all the variables
56p*8p-24*8p=0
Wy multiply elements
448p^2-192p=0
a = 448; b = -192; c = 0;
Δ = b2-4ac
Δ = -1922-4·448·0
Δ = 36864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36864}=192$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-192)-192}{2*448}=\frac{0}{896} =0 $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-192)+192}{2*448}=\frac{384}{896} =3/7 $

See similar equations:

| 2=n/29 | | 24+7n=6(4-6n) | | f/3-2.32=1.68 | | 175m-75m+48,000=51,000-150m | | 7x+11=16x-38+180 | | 180=(4x)+(5x-27) | | 12x+4(-3x+4)=4 | | 7r-3=-10 | | 8(x-4)+3x=67 | | 457.15=240+1.01x | | x+2=-30+13 | | 0.5x+2+3x+1.5=5x+2 | | 2(2k+4)=16+7k | | 2(j-38)=24 | | 26=8x+12-7x | | -3x-6=2+4 | | s+6+2s=17s | | 28=8×+12-7x | | 2+8b=8b+15 | | 12=3x–12 | | -3(3x7)+4(x-6)=-4 | | –15+3w=3 | | 1.72y-0.04y=0.42  | | 2/5*n-7=8 | | 12y-3=7y+17 | | 12=3w–12 | | -4h+7=4h7 | | 12m=14m+18 | | |x^2+8x|=5x+40 | | 2.7(2x-4)=42 | | x+5–x+3=4+6+3 | | 10x-15=6x-6 |

Equations solver categories