8(x+7)=6(x-4)5x-20=3(x-4)24x+12=2(12x+6)

Simple and best practice solution for 8(x+7)=6(x-4)5x-20=3(x-4)24x+12=2(12x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x+7)=6(x-4)5x-20=3(x-4)24x+12=2(12x+6) equation:



8(x+7)=6(x-4)5x-20=3(x-4)24x+12=2(12x+6)
We move all terms to the left:
8(x+7)-(6(x-4)5x-20)=0
We multiply parentheses
8x-(6(x-4)5x-20)+56=0
We calculate terms in parentheses: -(6(x-4)5x-20), so:
6(x-4)5x-20
We multiply parentheses
30x^2-120x-20
Back to the equation:
-(30x^2-120x-20)
We get rid of parentheses
-30x^2+8x+120x+20+56=0
We add all the numbers together, and all the variables
-30x^2+128x+76=0
a = -30; b = 128; c = +76;
Δ = b2-4ac
Δ = 1282-4·(-30)·76
Δ = 25504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{25504}=\sqrt{16*1594}=\sqrt{16}*\sqrt{1594}=4\sqrt{1594}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(128)-4\sqrt{1594}}{2*-30}=\frac{-128-4\sqrt{1594}}{-60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(128)+4\sqrt{1594}}{2*-30}=\frac{-128+4\sqrt{1594}}{-60} $

See similar equations:

| 4-3x-4x-2=-9x | | 0=(2x)(60-2x) | | -67=8y-3 | | 3x+3=6(x-1) | | 4x-2(x-2)=-8+5x-9 | | -1.7=n+9 | | 15(3c-2)=8c-2 | | 8+n=1 | | |x|-5=13 | | 2x+6÷4=10 | | x=1/3+160000 | | 7v+4=-14+10v | | 3k+2(k+1)=10k-5(k+4) | | 5x+7=-6x+95 | | 4+2p=10(.60p-2 | | 2(2x-3)-4=-10x+6x-3 | | 1+2m=-19-8m | | 5x7+-6x=-95 | | 5x-3(x+4)=3x+7(x-5) | | X^3+20x^2-74000=0 | | 3x-15/5=9 | | -10+4n=n-1 | | 11y=18+9y | | 18x-14=56x+5 | | 5x/2-1=9 | | 2(2x-3)-4=10x+6x-3 | | 11y=18+9 | | √x+3+4=5 | | 15.71=3.14r^2+(r+4) | | 7v=v+42 | | -6x/5+5=-25 | | 15-9x=-3x-3 |

Equations solver categories