8(x-3)+7=(4-17)x2x

Simple and best practice solution for 8(x-3)+7=(4-17)x2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x-3)+7=(4-17)x2x equation:



8(x-3)+7=(4-17)x2x
We move all terms to the left:
8(x-3)+7-((4-17)x2x)=0
We add all the numbers together, and all the variables
8(x-3)-((-13)x2x)+7=0
We multiply parentheses
8x-((-13)x2x)-24+7=0
We calculate terms in parentheses: -((-13)x2x), so:
(-13)x2x
We multiply parentheses
-13x^2
Back to the equation:
-(-13x^2)
We add all the numbers together, and all the variables
-(-13x^2)+8x-17=0
We get rid of parentheses
13x^2+8x-17=0
a = 13; b = 8; c = -17;
Δ = b2-4ac
Δ = 82-4·13·(-17)
Δ = 948
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{948}=\sqrt{4*237}=\sqrt{4}*\sqrt{237}=2\sqrt{237}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-2\sqrt{237}}{2*13}=\frac{-8-2\sqrt{237}}{26} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+2\sqrt{237}}{2*13}=\frac{-8+2\sqrt{237}}{26} $

See similar equations:

| 1/2m-5=25 | | 9/16=y/15 | | .(7−b)+(3b+2)= | | 9(c-86)=99 | | -4+2x=4x*8 | | g-72/3=9 | | 81=5a+21 | | -8k+44=20k+80 | | 32=-3b-10 | | 4(w+3=2(5w+6) | | y=-40.6*3+86.3 | | 18a-15a-a=20 | | -.932=(x-26648)/x | | -5*g(4)-1=1-3/4(4) | | 12x-20=1x-38 | | a|5+6=13 | | y-7=-37 | | b+3/7=3 | | 2x-20=15x-38 | | 8x-4(5+2x)=-20 | | 8/7=n/63 | | 10n-9=-69 | | 5(v+2)=-2(7v-7)+v | | 10^x-x=300 | | 40=4(t-72) | | c/5-13=11 | | 118=6-7n | | 130+3x+67=180 | | 6(x+10)=-8 | | Y=80+70x | | 55=12x+7 | | 2(p-51)=86 |

Equations solver categories