8(x-3)=1/324x-72

Simple and best practice solution for 8(x-3)=1/324x-72 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x-3)=1/324x-72 equation:



8(x-3)=1/324x-72
We move all terms to the left:
8(x-3)-(1/324x-72)=0
Domain of the equation: 324x-72)!=0
x∈R
We multiply parentheses
8x-(1/324x-72)-24=0
We get rid of parentheses
8x-1/324x+72-24=0
We multiply all the terms by the denominator
8x*324x+72*324x-24*324x-1=0
Wy multiply elements
2592x^2+23328x-7776x-1=0
We add all the numbers together, and all the variables
2592x^2+15552x-1=0
a = 2592; b = 15552; c = -1;
Δ = b2-4ac
Δ = 155522-4·2592·(-1)
Δ = 241875072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{241875072}=\sqrt{5184*46658}=\sqrt{5184}*\sqrt{46658}=72\sqrt{46658}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15552)-72\sqrt{46658}}{2*2592}=\frac{-15552-72\sqrt{46658}}{5184} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15552)+72\sqrt{46658}}{2*2592}=\frac{-15552+72\sqrt{46658}}{5184} $

See similar equations:

| 17q-20q=-4(13+5q) | | (x-18)/5=32 | | 2w+5*2w=42 | | 10+v=4-5v | | 9-(6x+8)=-8(6x-8) | | 3×3.14d=12×3.14 | | (x+17)+(x+18)=(19) | | 5a+7=33 | | 2x-5x(x-5)=-2+4x+13 | | -14=6-2r-4 | | A+9=6a-11 | | 7+½y=10 | | x+28=35-14 | | 17-2m+13=60 | | 5x+25=8x+4 | | 2(4-x)=8x-7 | | 6+x/2=3.60 | | 7/3x+2/3=-18 | | -9y-8=6y+20 | | -2=-2(x+(-1) | | 12x-8x=4-20 | | 7n-5+3n=15 | | 630/6x+185=2.4552 | | 7+2x+6x=23 | | 9x+5-12x=-7 | | |3x+3|=12 | | 97/7=x | | 7x+3x=10-20 | | 2/3x=26/33 | | -2x-8+4x=-22 | | .1x+.25(50)=21.5 | | 15=-3(4x+7) |

Equations solver categories