8(x-9)(x-8)=x+8(x-3)

Simple and best practice solution for 8(x-9)(x-8)=x+8(x-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x-9)(x-8)=x+8(x-3) equation:



8(x-9)(x-8)=x+8(x-3)
We move all terms to the left:
8(x-9)(x-8)-(x+8(x-3))=0
We multiply parentheses ..
8(+x^2-8x-9x+72)-(x+8(x-3))=0
We calculate terms in parentheses: -(x+8(x-3)), so:
x+8(x-3)
We multiply parentheses
x+8x-24
We add all the numbers together, and all the variables
9x-24
Back to the equation:
-(9x-24)
We multiply parentheses
8x^2-64x-72x-(9x-24)+576=0
We get rid of parentheses
8x^2-64x-72x-9x+24+576=0
We add all the numbers together, and all the variables
8x^2-145x+600=0
a = 8; b = -145; c = +600;
Δ = b2-4ac
Δ = -1452-4·8·600
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-145)-5\sqrt{73}}{2*8}=\frac{145-5\sqrt{73}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-145)+5\sqrt{73}}{2*8}=\frac{145+5\sqrt{73}}{16} $

See similar equations:

| 45-b=4b-85 | | 3–y = y+4 | | -1=-3+10x | | 3.7y-31.5-19y=13.5 | | -6a+5=3(2a-1 | | y-21=5 | | 12x+1=154 | | -5x-4=-2+x-6-5x | | 8r+7=13+6r | | 4x+3=-9+7x | | 8.5-3k=11.5 | | 5x-2+4x+17=180 | | 12v6=32v2+16 | | 204=148-x | | v=4/3(3.14)(11) | | 15x+13=17+3 | | 3.5(15-d)+5.5d=58.5 | | 3=d-16 | | 2x-12=98-3x | | 4x+17+5x-2=180 | | 2400=1500-300x | | -12=-w/2 | | 3.2+w/5=-9.3 | | 35=3q+11 | | 7.4a+44=3.2a+86.4 | | 4x+2+3x-5=92 | | 7x-(5x-5)=19 | | 180=4x-7 | | 2c+5(13-c)=44 | | -12.2+2.8w=1.05w | | 180=3x-1 | | 8y-5=4y+11= |

Equations solver categories