8(x-9)(x-8)=x+8-(x+5)

Simple and best practice solution for 8(x-9)(x-8)=x+8-(x+5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x-9)(x-8)=x+8-(x+5) equation:



8(x-9)(x-8)=x+8-(x+5)
We move all terms to the left:
8(x-9)(x-8)-(x+8-(x+5))=0
We multiply parentheses ..
8(+x^2-8x-9x+72)-(x+8-(x+5))=0
We calculate terms in parentheses: -(x+8-(x+5)), so:
x+8-(x+5)
determiningTheFunctionDomain x-(x+5)+8
We get rid of parentheses
x-x-5+8
We add all the numbers together, and all the variables
3
Back to the equation:
-(3)
We multiply parentheses
8x^2-64x-72x+576-3=0
We add all the numbers together, and all the variables
8x^2-136x+573=0
a = 8; b = -136; c = +573;
Δ = b2-4ac
Δ = -1362-4·8·573
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-136)-4\sqrt{10}}{2*8}=\frac{136-4\sqrt{10}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-136)+4\sqrt{10}}{2*8}=\frac{136+4\sqrt{10}}{16} $

See similar equations:

| 2+x+1=-3+2x | | 11-2x+4=8+5x | | -3v-8=-7v+12 | | 2h−6/6=2/3 | | x*x+5x-6=-6 | | 6(-3-r)-2r=14 | | 4x+2x-24=3(2x-8) | | 7(a+6)=47.6 | | -23.56=k-17.06 | | 2^x-1=(4^x)/8 | | 8p=24.8 | | -4+4w=24 | | 4x+2=5x+10=2x+14 | | 9e-4=60.8 | | k-4P=1+3P | | 2x+27+8=x+24 | | -5/4(r+3/2)=-6-7/3r | | 6x-4=8x= | | 2u+10=4u | | 8.46=45.87x | | r+16=4r-5 | | 8=2c-8 | | x+3=13+6x | | 14.76=b+5.0 | | 4/7+2/3x=5 | | 7e-6=43 | | 6y+2=3y+6=13y-12 | | 23/20x=92 | | 6(w+9)=60 | | 8v+15=13v | | n-5/10=10 | | -3x+-3=5x-35 |

Equations solver categories