8(x2=6)-5=171

Simple and best practice solution for 8(x2=6)-5=171 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x2=6)-5=171 equation:



8(x2=6)-5=171
We move all terms to the left:
8(x2-(6)-5)=0
We add all the numbers together, and all the variables
8(+x^2-6-5)=0
We multiply parentheses
8x^2-48-40=0
We add all the numbers together, and all the variables
8x^2-88=0
a = 8; b = 0; c = -88;
Δ = b2-4ac
Δ = 02-4·8·(-88)
Δ = 2816
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2816}=\sqrt{256*11}=\sqrt{256}*\sqrt{11}=16\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{11}}{2*8}=\frac{0-16\sqrt{11}}{16} =-\frac{16\sqrt{11}}{16} =-\sqrt{11} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{11}}{2*8}=\frac{0+16\sqrt{11}}{16} =\frac{16\sqrt{11}}{16} =\sqrt{11} $

See similar equations:

| 3x+1=–5x–4 | | x+5=20=15 | | –(1–5x)=-8x+25 | | 7x-9-11=3x=4+2x | | 2x+1=–5x–4 | | 1x+1=–5x–4 | | -10=2x+16 | | -7x+2(x-6)=3 | | 2(2x+5)=5x+20 | | 5/x-2=-3/11 | | 5x=120x= | | -20x+10=50 | | 8(x-5)=293x-8) | | 6(4x-5)=24x-30+2x | | 5/x-2=-11/3 | | 6x+1=4x+1=180 | | 2(x+6)-8=-10 | | 5x-6=50 | | x+1=–5x–4 | | -11(x+1)+12x=33+10x | | 4x-2x+12=4(x-5) | | 4(2x-4)+17=3(2+x)-20 | | 4/12c+120/48=30/4 | | 23+3d=59 | | 6x-5-3x=2(x-1) | | 5x+5+3x+8+2x+5=180 | | X²+2x-255=0 | | 6x+9=19+x | | 5/3​=10/q​ | | 110.32+4x=19.79 | | 6=3r−6 | | 2(x+4)-24=96 |

Equations solver categories