If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2=72
We move all terms to the left:
8y^2-(72)=0
a = 8; b = 0; c = -72;
Δ = b2-4ac
Δ = 02-4·8·(-72)
Δ = 2304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2304}=48$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-48}{2*8}=\frac{-48}{16} =-3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+48}{2*8}=\frac{48}{16} =3 $
| A+3b=93 | | 18/t+8/t=10 | | 42+y=32 | | 4y+8=2Y+3 | | 20x^2-8x=-10 | | 12+3(x+4)=36 | | X+14=6x+5 | | j+16/2=2 | | 5-2a+4=11 | | (6^3-2x)(5^x+4)=72 | | n/9=11/6 | | 4(^x^+2)=100 | | 4(^x^+2)=10 | | -90=-5(2x+4) | | 5^x^-3=125 | | 4x+3=3(x-3)+5x-4 | | Z=-y+3 | | 6y-3=2+y | | 2(3/5)-(4/5)=x | | b+36=-57 | | b+36=-7 | | -10+2x=-8+4x | | -1-6(6n-3)=-18+n | | 12x16=-16x-40 | | -200=20v | | 30+8v=7(v+5) | | -18n=234 | | -24=k-16 | | 5=k-(-12) | | -5=n-14 | | (4x+2)-(12x+18)+2(5x-3)=6+11 | | 12x-6+148=2x |