8+(2/3*x)=78

Simple and best practice solution for 8+(2/3*x)=78 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8+(2/3*x)=78 equation:



8+(2/3*x)=78
We move all terms to the left:
8+(2/3*x)-(78)=0
Domain of the equation: 3*x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
(+2/3*x)+8-78=0
We add all the numbers together, and all the variables
(+2/3*x)-70=0
We get rid of parentheses
2/3*x-70=0
We multiply all the terms by the denominator
-70*3*x+2=0
Wy multiply elements
-210x*x+2=0
Wy multiply elements
-210x^2+2=0
a = -210; b = 0; c = +2;
Δ = b2-4ac
Δ = 02-4·(-210)·2
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{105}}{2*-210}=\frac{0-4\sqrt{105}}{-420} =-\frac{4\sqrt{105}}{-420} =-\frac{\sqrt{105}}{-105} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{105}}{2*-210}=\frac{0+4\sqrt{105}}{-420} =\frac{4\sqrt{105}}{-420} =\frac{\sqrt{105}}{-105} $

See similar equations:

| 2x+9=8x+-9 | | 170x=1/3.6 | | -5p+39=-5(p+8) | | 2/5x+8/3-4/3=11/15 | | -41-6a=-20 | | (2a+10)=6 | | -9(b-82)=-90 | | 43x+4=110+(-2+17x) | | 6x-2=8x+28 | | 6x+1=4(x+5.5)-7.6 | | (7x+6)/3=9 | | 5h+4-3h+6=30 | | 4(j-60)=80 | | 9c+3=22 | | 11-8x=29 | | 4(2x-1)=2(4x-2 | | 3(2x-6)=5(-3x-2) | | 3/4n+2=11 | | x/170=1/3.6 | | -4(3-2x)=12 | | 2000=6.5n+35 | | 7/10=x/90 | | c/3+9=12 | | 4(2x–3)=5x+7 | | -557=b+111 | | m/5-4=m/15+12 | | -4x(3-2x)=12 | | 88=4(b+13) | | 16x=-27 | | 4+2a=a-1 | | 22-4a=8a-2 | | 10t=−30 |

Equations solver categories