8+2(x-3)=4(x-5)3(20-x)

Simple and best practice solution for 8+2(x-3)=4(x-5)3(20-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8+2(x-3)=4(x-5)3(20-x) equation:


Simplifying
8 + 2(x + -3) = 4(x + -5) * 3(20 + -1x)

Reorder the terms:
8 + 2(-3 + x) = 4(x + -5) * 3(20 + -1x)
8 + (-3 * 2 + x * 2) = 4(x + -5) * 3(20 + -1x)
8 + (-6 + 2x) = 4(x + -5) * 3(20 + -1x)

Combine like terms: 8 + -6 = 2
2 + 2x = 4(x + -5) * 3(20 + -1x)

Reorder the terms:
2 + 2x = 4(-5 + x) * 3(20 + -1x)

Reorder the terms for easier multiplication:
2 + 2x = 4 * 3(-5 + x)(20 + -1x)

Multiply 4 * 3
2 + 2x = 12(-5 + x)(20 + -1x)

Multiply (-5 + x) * (20 + -1x)
2 + 2x = 12(-5(20 + -1x) + x(20 + -1x))
2 + 2x = 12((20 * -5 + -1x * -5) + x(20 + -1x))
2 + 2x = 12((-100 + 5x) + x(20 + -1x))
2 + 2x = 12(-100 + 5x + (20 * x + -1x * x))
2 + 2x = 12(-100 + 5x + (20x + -1x2))

Combine like terms: 5x + 20x = 25x
2 + 2x = 12(-100 + 25x + -1x2)
2 + 2x = (-100 * 12 + 25x * 12 + -1x2 * 12)
2 + 2x = (-1200 + 300x + -12x2)

Solving
2 + 2x = -1200 + 300x + -12x2

Solving for variable 'x'.

Reorder the terms:
2 + 1200 + 2x + -300x + 12x2 = -1200 + 300x + -12x2 + 1200 + -300x + 12x2

Combine like terms: 2 + 1200 = 1202
1202 + 2x + -300x + 12x2 = -1200 + 300x + -12x2 + 1200 + -300x + 12x2

Combine like terms: 2x + -300x = -298x
1202 + -298x + 12x2 = -1200 + 300x + -12x2 + 1200 + -300x + 12x2

Reorder the terms:
1202 + -298x + 12x2 = -1200 + 1200 + 300x + -300x + -12x2 + 12x2

Combine like terms: -1200 + 1200 = 0
1202 + -298x + 12x2 = 0 + 300x + -300x + -12x2 + 12x2
1202 + -298x + 12x2 = 300x + -300x + -12x2 + 12x2

Combine like terms: 300x + -300x = 0
1202 + -298x + 12x2 = 0 + -12x2 + 12x2
1202 + -298x + 12x2 = -12x2 + 12x2

Combine like terms: -12x2 + 12x2 = 0
1202 + -298x + 12x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(601 + -149x + 6x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(601 + -149x + 6x2)' equal to zero and attempt to solve: Simplifying 601 + -149x + 6x2 = 0 Solving 601 + -149x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 100.1666667 + -24.83333333x + x2 = 0 Move the constant term to the right: Add '-100.1666667' to each side of the equation. 100.1666667 + -24.83333333x + -100.1666667 + x2 = 0 + -100.1666667 Reorder the terms: 100.1666667 + -100.1666667 + -24.83333333x + x2 = 0 + -100.1666667 Combine like terms: 100.1666667 + -100.1666667 = 0.0000000 0.0000000 + -24.83333333x + x2 = 0 + -100.1666667 -24.83333333x + x2 = 0 + -100.1666667 Combine like terms: 0 + -100.1666667 = -100.1666667 -24.83333333x + x2 = -100.1666667 The x term is -24.83333333x. Take half its coefficient (-12.41666667). Square it (154.1736112) and add it to both sides. Add '154.1736112' to each side of the equation. -24.83333333x + 154.1736112 + x2 = -100.1666667 + 154.1736112 Reorder the terms: 154.1736112 + -24.83333333x + x2 = -100.1666667 + 154.1736112 Combine like terms: -100.1666667 + 154.1736112 = 54.0069445 154.1736112 + -24.83333333x + x2 = 54.0069445 Factor a perfect square on the left side: (x + -12.41666667)(x + -12.41666667) = 54.0069445 Calculate the square root of the right side: 7.348941727 Break this problem into two subproblems by setting (x + -12.41666667) equal to 7.348941727 and -7.348941727.

Subproblem 1

x + -12.41666667 = 7.348941727 Simplifying x + -12.41666667 = 7.348941727 Reorder the terms: -12.41666667 + x = 7.348941727 Solving -12.41666667 + x = 7.348941727 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '12.41666667' to each side of the equation. -12.41666667 + 12.41666667 + x = 7.348941727 + 12.41666667 Combine like terms: -12.41666667 + 12.41666667 = 0.00000000 0.00000000 + x = 7.348941727 + 12.41666667 x = 7.348941727 + 12.41666667 Combine like terms: 7.348941727 + 12.41666667 = 19.765608397 x = 19.765608397 Simplifying x = 19.765608397

Subproblem 2

x + -12.41666667 = -7.348941727 Simplifying x + -12.41666667 = -7.348941727 Reorder the terms: -12.41666667 + x = -7.348941727 Solving -12.41666667 + x = -7.348941727 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '12.41666667' to each side of the equation. -12.41666667 + 12.41666667 + x = -7.348941727 + 12.41666667 Combine like terms: -12.41666667 + 12.41666667 = 0.00000000 0.00000000 + x = -7.348941727 + 12.41666667 x = -7.348941727 + 12.41666667 Combine like terms: -7.348941727 + 12.41666667 = 5.067724943 x = 5.067724943 Simplifying x = 5.067724943

Solution

The solution to the problem is based on the solutions from the subproblems. x = {19.765608397, 5.067724943}

Solution

x = {19.765608397, 5.067724943}

See similar equations:

| -5(3-r)+4=5r-11 | | 1/2b-2=1/4 | | 3-7x-1=5 | | x^2+2.6x+1.68=0 | | 6(10-x)=3(3x-5)9(2x-1) | | 18-7(3-x)=0 | | 3y+7=4x-7+9 | | 5(y-3)+2=4(2y+5) | | 13x+1=5(3+2x)+x | | -6(y+2)-3=15 | | z+18=32 | | 24-[5+6y-3(y+3)]=-4(5y-7)-[6(y-1)-16y+20] | | 9x+16=52 | | 2+3(12-x)=2(x-6)8(x+1)+1 | | 12(s+.66)=10.4 | | 5(x+y)-x+y=-4 | | 3(9-5t)-5(9-10t)=7 | | y-19=-2 | | 5(9+2x)=32-x | | q(x+2)=-x^2+4x+1 | | 2(b+83.33)=416.66 | | 12+3x=x^2 | | -5+4r=3 | | 2x+y+2x-5-y=0 | | 20x+15x^2+20=0 | | 2(x+y)-4(x+y)=8(x+2)-8(y+2) | | x=180-(2x-15) | | 8+3(x+4)=32-x | | X-(0.3X)=420 | | -7(2p-1)+3(8-p)=0 | | 3-z=-16 | | 8(5-x)=3x-4 |

Equations solver categories