8+7/10h=6+1/5h

Simple and best practice solution for 8+7/10h=6+1/5h equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8+7/10h=6+1/5h equation:



8+7/10h=6+1/5h
We move all terms to the left:
8+7/10h-(6+1/5h)=0
Domain of the equation: 10h!=0
h!=0/10
h!=0
h∈R
Domain of the equation: 5h)!=0
h!=0/1
h!=0
h∈R
We add all the numbers together, and all the variables
7/10h-(1/5h+6)+8=0
We get rid of parentheses
7/10h-1/5h-6+8=0
We calculate fractions
35h/50h^2+(-10h)/50h^2-6+8=0
We add all the numbers together, and all the variables
35h/50h^2+(-10h)/50h^2+2=0
We multiply all the terms by the denominator
35h+(-10h)+2*50h^2=0
Wy multiply elements
100h^2+35h+(-10h)=0
We get rid of parentheses
100h^2+35h-10h=0
We add all the numbers together, and all the variables
100h^2+25h=0
a = 100; b = 25; c = 0;
Δ = b2-4ac
Δ = 252-4·100·0
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{625}=25$
$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-25}{2*100}=\frac{-50}{200} =-1/4 $
$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+25}{2*100}=\frac{0}{200} =0 $

See similar equations:

| 13=-3x-4)=8 | | 22x+6-18x=14-30x+32. | | 3(x-4)/7=-2x | | 3(2x+4)-9=8 | | 2+4/5=y | | -59-15x=21-10x | | 7^a=343 | | 2+x-4=22 | | 3(8a+3)=201 | | 4x+8-x=6x-3(x-4) | | 2x4/5=x | | 3x-125=-7x+105 | | x+3=3x-71 | | 3(x+1)=3(x+2) | | 96=6x+30 | | 4/5=1/5+3x | | 6x+60=4(x+20) | | 9x-5(3x+8)=-9 | | 15-6=8x | | 230=-8(1-5x)-6x | | 12r=-1r-11 | | 172=-4(5b-8) | | 5(x-1)=x+X | | 10x-66=18+13x | | 2x-6x+8=40 | | 2/3(6x+13)=4x+2 | | 3(2p-1)+2(5p-10)=8p-9 | | x+3=x-71 | | 5.5x+0.3(4-x)=7.2x-3 | | 15*2z=8*60 | | 7x/9-x=x/72-5/8 | | 7x+9=7(x+8$ |

Equations solver categories