If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8-1/2x+4=0.6x+3-0.2x
We move all terms to the left:
8-1/2x+4-(0.6x+3-0.2x)=0
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
-1/2x-(0.4x+3)+8+4=0
We add all the numbers together, and all the variables
-1/2x-(0.4x+3)+12=0
We get rid of parentheses
-1/2x-0.4x-3+12=0
We multiply all the terms by the denominator
-(0.4x)*2x-3*2x+12*2x-1=0
We add all the numbers together, and all the variables
-(+0.4x)*2x-3*2x+12*2x-1=0
We multiply parentheses
-0x^2-3*2x+12*2x-1=0
Wy multiply elements
-0x^2-6x+24x-1=0
We add all the numbers together, and all the variables
-1x^2+18x-1=0
a = -1; b = 18; c = -1;
Δ = b2-4ac
Δ = 182-4·(-1)·(-1)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-8\sqrt{5}}{2*-1}=\frac{-18-8\sqrt{5}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+8\sqrt{5}}{2*-1}=\frac{-18+8\sqrt{5}}{-2} $
| 6(x+15)=-12 | | 0.6x+2=17 | | 8a^2+45a-9=0 | | 9x+2=102 | | 3^(3x-4)=243^x | | T=xx5 | | 4x^2-4x-25=0 | | T=5xx | | 2v+10=14 | | b/13+3=3 | | 9•x=-4.5 | | -9(s+7)=18 | | ⅔x+4=⅚x+3 | | r/2+5=12 | | -4(0.2x+0.4)=2(-0.4x+8) | | 16s+5=-11 | | 6n+12=5n | | X+76x+76+40=180 | | X+76x+76+40=189 | | 5(p+8)=-10 | | 9x+0.3=-4.2 | | 80+59+x+48=180 | | 4.35x+5.45(130-x)=681.70 | | d−49=13 | | 3x-(0.8)=10 | | 10x-1.2=1.8 | | 4=14-5m | | 2x+12=116 | | 24*w=8 | | 6(3x-5)=2(9x-7) | | C=80n+20 | | C=25n+20 |