If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8-5x^2=0
a = -5; b = 0; c = +8;
Δ = b2-4ac
Δ = 02-4·(-5)·8
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-5}=\frac{0-4\sqrt{10}}{-10} =-\frac{4\sqrt{10}}{-10} =-\frac{2\sqrt{10}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-5}=\frac{0+4\sqrt{10}}{-10} =\frac{4\sqrt{10}}{-10} =\frac{2\sqrt{10}}{-5} $
| 1/2=1/2g+3 | | 2x+2x=x+36 | | 2x/7+5=17 | | Y=8(3.75x) | | ^(7+2x)/3=5 | | A.2x+5-5x=-1(x=2) | | 3x−10=15 | | x×0,25+2,5+x=7,5+0,75x-10 | | -8(y-3)=8 | | 5-6v=59 | | n/25+12=14 | | 3x+20=23* | | -14g-1=6* | | 53=18-7y | | 18=1/2x+9 | | -7b+10b=12 | | 24=8+8/11b | | 12/7=-4x | | -7x/4=-42 | | 200=10n. | | 1+9/10a=28 | | 294=32-x | | 6x2+4x+7=0 | | 3x=x3x | | 49=-6+9+2b | | Y=5x^2*7x-15 | | 15n(-4)=-60 | | 32=89(p+3) | | 32=89p+3) | | 53+2=p | | y/1.2-3.2=-1.7 | | 7/4=1/8f |